Synaptic vesicle reuse and its implications.

نویسنده

  • Ege T Kavalali
چکیده

Presynaptic nerve terminals are exquisite vesicle trafficking machines. Neurotransmission is sustained by constant recycling of a handful of vesicles. Therefore, the rate and the pathway of vesicle trafficking can critically determine synaptic efficacy during activity. However, it is yet unclear whether synaptic vesicle recycling becomes rate limiting on a rapid time scale during physiologically relevant forms of activity in the brain. Several forms of synaptic plasticity arise from persistent alterations in the dynamics of vesicle trafficking in presynaptic terminals. What makes presynaptic forms of plasticity particularly interesting is that they not only increase or decrease the amplitude of synaptic responses but also cause frequency-dependent changes in neurotransmission. In this manner, plasticity can alter the information coding in neural circuits beyond simple scaling of synaptic responses. However, studying the synaptic vesicle cycle beyond exocytosis and endocytosis has been difficult. In the past decade, several methods have been developed to infer vesicles' trajectory during their cycle in the synapse. Nevertheless, several questions remain. A better understanding of the role of synaptic vesicle trafficking in neurotransmission will require novel approaches that either combine existing methods or the development of new methods to trace vesicles during their cycle. Recent evidence suggests that various presynaptic proteins involved in the synaptic function and homeostasis are either mutated or altered in their expression in several neurological and psychiatric disorders. Therefore, elucidation of the mechanisms that underlie the synaptic vesicle cycle may reveal novel therapeutic targets for brain disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic vesicle recycling adapts to chronic changes in activity.

Synaptic vesicle recycling is essential for maintaining neurotransmission during rhythmic activity. To test whether the demands imposed by ambient activity influences synaptic vesicle trafficking, we compared the kinetics of synaptic depression in hippocampal versus neocortical cultures, which have high and low levels of intrinsic activity, respectively. In response to moderate 10 Hz stimulatio...

متن کامل

Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus.

During short-term synaptic depression, neurotransmission rapidly decreases in response to repetitive action potential firing. Here, by blocking the vacuolar ATPase, alkalinizing the extracellular pH, or exposing hippocampal slices to pH buffers, we impaired neurotransmitter refilling, and electrophysiologically tested the role of vesicle reuse in synaptic depression. Under all conditions, synap...

متن کامل

Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses.

High-frequency induced short-term synaptic depression is a common feature of central synapses in which synaptic responses rapidly decrease to a sustained level. A limitation in the availability of release-ready vesicles is thought to be a major factor underlying this phenomenon. Here, we studied the kinetics of vesicle reavailability and reuse during synaptic depression at hippocampal synapses....

متن کامل

Spatiotemporal Regulation of Synaptic Vesicle Fusion Sites in Central Synapses

The number and availability of vesicle release sites at the synaptic active zone (AZ) are critical factors governing neurotransmitter release; yet, these fundamental synaptic parameters have remained undetermined. Moreover, how neural activity regulates the spatiotemporal properties of the release sites within individual central synapses is unknown. Here, we combined a nanoscale imaging approac...

متن کامل

MinireviewCycling the Synapse : Scenic versus Direct Routes for Vesicles

siently connects the vesicle interior to the extracellular What happens to synaptic vesicles after they release space. Once the pore closes, the empty vesicle either their neurotransmitter content? Recent work on a varidetaches from the active zone or it remains in place and ety of synaptic systems shows that there is no single refills with neurotransmitter for another round of release answer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2006